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Introduction to Quantum Physics

* Macro particle- Classical Physics based on Newton’s laws

* Micro particle — Quantum Physics; ex- electrons and high
frequency electromagnetic waves

e Basic principles in quantum physics:

(1) energy quanta :- E=hv

(11) Wave particle duality :- A =h/p

(111) Uncertainty principle :- Ax. Ap > h = h/2nt & other two

[h =1.054 x 10 3*J-s is very small; so significant only in the
subatomic level]

 Consequence: we cannot determine the exact position of
an electron, but only determine the probability of finding
an electron at a particular position



Introduction to Quantum Physics ........

» Experimental results involving electromagnetic waves and micro
particles could not be explained by classical laws of physics, hence,
Schrodinger, in 1926 provided wave mechanics which incorporated
the principles of quanta of Max Planck, the wave-particle duality of
de Broglie & uncertainty principle.

» Motion of electrons in a crystal is explained by wave theory.

» Wave theory is described by Schrodinger's wave equation in wave
function U,
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), is used to describe the behavior of the particle with wave nature &
is @ complex quantity



Introduction to Quantum Physics ........

* Probability density given by

(W (x, )" = W(x, 1) P*(x, 1)
= |y@)f

With ] W)~ dy =1

o0

Boundary conditions used for solution of the Sch. Eqn.

¥ (x) must be finite, single-valued, and continuous.

di (x)/dx must be finite, single-valued, and continuous.



Introduction to Quantum Physics ........
® Application of Sch. Egn.

: : k>
**Free Particle: continuous energy E = S
**Particle in Potential Well : energy is quantized and discrete
Fln’a?
=

*»*Particle in Potential step: finite probability of particle moving
to step region when E <V,

**Particle in Potential barrier: Tunneling

“*Wave theory may be extended to the ator =~ —me*
*With p=153... " (dme) 20’0
| 3/2
quantum IRV TV IR N v/lm:%,(_{) e
Vi a
numbers Jm,:[,l—-l,....o A7 ¢ h—z‘ ’
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Hipne-

s Electron distribution in the atom
obey Pauli’s exclusion principle



Introduction to Quantum theory of solids

e Crystal = lattice + basis

* Basis has atoms in it, which have bound electron as well as free
electrons in them. The free electrons inside the crystalline solid
roam freely and are mainly

responsible for
conduction phenomena

* Inside the crystal structure the positive ions are submerged in
the sea of free electrons
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Introduction to Quantum theory of solids......
Electrons inside the atoms of a solid have wave nature

Free electrons move throughout the crystal, but restricted
within the surfaces; hence are treated as particle trapped in a
box and studied with help of Sch. Eqgn.

Electrons in a solid can take up discrete energy values & obey
Pauli's principle for their distribution

To determine the electrical properties in a semiconductor
crystal and develop the current- voltage characteristic for device
application, it is important to understand the properties of the
electrons in the crystal lattice and the statistical characteristics
of the large no of electrons in the crystal.

Behavior of free electron is different from electron in the
potential field of the crystal

As current is due to flow of charge, electron behavior in external
electric field is important
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Electron Energy

Energy Bands

Consider: Atom ‘M’ with single outer ‘s’ electron

e electron
lei
n=1 n=2 Ilsion
molecule N atoms

n states

«— M-M disténce 0

The allowed energy levels for an atom are discrete (2 electrons with
opposite spin can occupy a state)

When atoms are brought into close contact, these energy levels split

If there are a large number of atoms, the discrete energy levels form a
“continuous” band

As gas condenses into a solid, one single energy state of an atom expands
into a band with closely spaced energy states. This also leads to lowering of
total energy.

As the two atoms get closer than ‘a’, repulsion due to core electrons/nuclei
increases.



Energy bands in solid
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since no two electrons can have the same quantum number, the discrete energy must split
into a band of energies in order that each electron can occupy a distinct quantum state.
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Energy bands in solid: Kronig-Penny model

* Actually the electron sees a periodic potential inside a solid
with spatial period of ‘@’ due to its crystal structure. The

periodic potential can be approximated by the Kronig Penny
model which is theoretically solvable.

V (X) =V (X + na)

Time independant Schrodinger's equation :
2

d vy N 2m

dx* A’

= - V(x) ¥ =0inside the periodic lattice.

Solution : y(x) =u, (x)e*™ <« Bloch function

whereu, (X) =u, (X +a) < A periodic function of x
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coska=P

Solution for  Shrodinger’s
equation for Kronig Penny
model is possible for energies
that satisfy the following
conditions
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Since -1 < cos ka < +1,

no solution is possible,

if RHS of equation is less than
one or greater than one.



Energy Bands

Kronig Penny model :

No solution here for ‘k’.

Y (x) decays here.
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Allowed Energy Bands
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Energy Bands
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Band structure in a solid

,— Valence band

Forbidden gap

. — Conduction band

*Valence band may be
partially filled, half filled or
completely filled
*Forbidden gap may be
narrow, wide or totally
absent




Energy Bands
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Crystalline State

Energy states of atom expand into energy bands of a crystal.
The lower bands are filled and higher bands are empty in a
semiconductor.

The highest filled band is the valence band.

The lowest empty band is the conduction band .



Classification in a solid

Conductors semiconductors Insulators
p=10%-10"°Om p=102-10°Om p=1011-10220Om
Cu29
C.B
EC
«— K
E, CB
\'I.B
CB
’ Eg= 3-10eV
Eg = 1eV
MgIZ g ’
VB
VB
C.B e,
EC

V.B




Energy Bands

E——

A C

—EC E =9eV
5 Empty

Eg =1.12 eV
ﬁv S ——
E

C

Si - semiconductor Si0, - insulator metal
Filled/Empty bands Filled/Empty bands Half filled band
Band gap present Large Band gap Overlapping bands

(0.1-2.5eV) (>3 eV) ( no band gap)
Carriers can be Very few carriers Large no. of
generated carriers

thermally



{

(]
T electron kinetic energy

increasing electron energy
Increasi ng hole energy

l hole kinetic energy
O

® Both electrons and holes tend to seek their lowest
energy positions.

* Electrons tend to fall in the energy band diagram.
* Holes float up like bubbles in water



The extrema for the conduction and valence bands are at different values of K

for silicon and germanium --these are called indirect bandgap semiconductors
The conduction band minimum and valence band maximum both occur at K=0
for GaAs --this is called a direct bandgap semiconductor.
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{a) Dhnrect ib) Indurect

indirect bandgap: AKis large but for a direct
Direct band gap bandgap: AK=0 and light in direct bandgap Indirect band gap
Ex: GaAs materials (GaAs, GaN, etc) but heat in indirect Ex: Si.Ge
) bandgap materials (Si, Ge) Y



Electrons and Holes

Holes are the electron voids in the valence band.

Electrons and holes carry negative and positive charge (+q)
respectively.

higher position in the energy band diagram represents a
higher electron energy. The minimum conduction electron
energy is Ec. Any energy above Ec is the electron kinetic
energy. Electrons may gain energy by getting accelerated in an
electric field and may lose energy through collisions with
imperfections in the crystal.

A lower location in the energy diagram represents a higher
hole energy It requires energy to move a hole “downward” as
it is equivalent to moving an electron upward. Ev is the
minimum hole energy.

The forbidden gap=E_-E = E,
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(a)

- E versus & diagram of the conduction and valence bands of a

(a)T =0Kand (b) T > 0 K.



Semiconductor Silicon

Why Silicon Technology is so dominant?

Band gap is ~1 eV.

Single element semiconductor

Almost perfect material available — purity and
crystalline perfection

Easy processability

Silicon —silicon oxide interface almost perfect
Amazing chemical, physical and electronic properties
Silicon — second most abundant element after oxygen



Semiconductor Silicon

GaAs

Silicon :

Diamond cubic lattice: atoms tetrahedrally bonded
(valence electronic shared — no free electrons)

4 nearest neighbours

Lattice parameter : 0.543 nm

Atomic spacing : 0.235 nm

8 atoms per unit cells

Si atomic density : 5x10%8 at/m?3



Semiconductor Silicon

Silicon Bond Model:
Siis in Column IV of the periodic table

Electonic structure of Si atom:

e 10 core electrons — 1s2 2s?p®

e 4valence electrons — 3s2p?

e 3sand 3p orbitals hybridize to form 4
tetrahedral 3sp orbitals

e Each orbital has one electron and is
capable forming one covalent bond
with a neighbouring atom

e Covalent bonds

Other Semiconductors:

*Ge, C, Siy, Ge,

*GaAs, InP, InGaAs, ZnSe, CdTe

On an average, 4 valence electrons per atom.
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VIA
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Zn| Ga|Ge| As | Se
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Silicon Crystal

Unit cell: ' ' =
0.5431 nm
> 5 X108 at/m?

View in <111=
View in <100= View in <110= direction

direction direction

http://jas.eng.buffalo.edu/education/solid /unitCell/home.html



http://jas.eng.buffalo.edu/education/solid/unitCell/home.html

Intrinsic Semiconductor (Si)

At OK, there are no free electrons.

At finite temperature, some electrons
break free due to thermal excitation
energy, kyT and a conduction electron
and hole are created.

A hole is absence of electron and has
positive charge equal in magnitude to
electronic charge.

The electrons and holes are not
localised as shown in the picture, but
form a cloud as per quantum physics.
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Effective mass

An electron 1n crystal may behave as if it had a mass different
from the free electron mass m, There are crystals in which the
effective mass of the carriers 1s much larger or much smaller
than m,. The effective mass may be anisotropic, and 1t may even
be negative. The important point 1s that the electron 1n a periodic
potential 1s accelerated relative to the lattice i an applied
electric or magnetic field as if 1ts mass 1s equal to an effective
mass.

In addition to an externally applied force, there are internal forces in the
crystal due to positively charged ions or protons and negatively charged
electrons, which will influence the motion of electrons in the lattice

me] = Fext + Fj:u = maua
it is difficult to take into account all of the internal forces, so we write

Eni=m'a

m?*, called the effective mass, takes into account the particle mass and
also the effect of the internal forces, it is related to the E versus k curves



Effective Mass .......

If the electron 1s free then E represents the kinetic energy only.
It 1s related to the wave vector k and momentum p by

-

E_hﬂkz B lp_

2m,  2m,

(1)

Theretfore, the quantum mechanical and classical free particles
exhibit precisely the same energy-momentum relationship, as
shown below.

E

(2)

<p>



Effective Mass .......

The velocity of the real particle 1s the ,Wpacet

phase velocity of the wave packet | f NN
envelope. It 1s called the group velocity _J:’ﬂ ﬂhw, > %
and 1ts relatton to energy and VU VV
momentum 1s obtained from (1) H

dE 1 dE «— AX——

(3)

g

dp  h dk

Here, E and k are mterpreted as the center values of energy and
crystal momentum, respectively.

Now, what happens when an “external” force F acts on the
wavepacket? F could be any force other than the crystalline
force associated with the periodic potential. The crystalline
force 1s already taken into account in the wavefunction
solution.



Effective Mass .......

The work done by the force on the wavepacket will then be

(4) dE = Fdx =Fv dt

From that we get the force expression using (3)
1 dE 1 dE dk
v_ dt v, dk dt

o
o

(5) F=

_d(hk)
dt

(6) F

The acceleration 1s found taking time derivative of (3)

dv, _li(d_E]_ 1 (d*E\d(hk)
dt  hdt\ dk dk* ) dt

7 a = —
() hQ



Effective Mass .......

Finally, we obtain the effective mass equation

dv
(8) F=m#—=£
dt
r7?=’:——1
9) -1 d’E
h* dk’

The equation (8) 1s 1dentical to Newton’s second law of motion

except that the actual particle mass 1s replaced by an effective

mass m*.
effective mass is a parameter that relates the quantum mechanical results
to the classical force equations, provided that the internal forces and
guantum mechanical properties are taken into account through the

effective mass

The motion of the free electron is in the opposite direction to the
applied electric field because of the negative charge, asa=-q E/m

Different lattice spacing lead to different curvatures for E(K) and effective
masses that depend on the direction of motion.



Effective Mass .......

Effective mass of electrons and holes:

0°E

-1
Som’” = hz(akzj oc curvature of the band

Since, the second derivative at a minima is positive,

electrons at the bottom of conduction band has negative
charge and positive mass ( larger d2E/dK? ; light m")

Again,second derivative at a
maxima is negative, the
effective mass will be negative.
But,a=-qE/-m=gE/m
particle at the top of valence
band move in the field
direction; these are called
holes, has a positive effective
mass and a positive electronic
charge

smaller d2E/dK? ; heavy m”

E(k
A m;-
m,
k
m, >m;
Ge Si GaAs
E, eV
0.66 | 1.12 1.42
(300K)
m,/m, 0.55 | 1.08 | 0.067
m,/m, 0.37 | 0.56 0.48

m_ = rest mass of electron = 9.11 x 103! kg




Density of states

The number of carriers contribute to the conduction process is a
function of the number of available energy or qguantum states. Each
state represents a unique spin (up and down) and unigue solution
to the Schrodinger’s wave equation for the periodic electric
potential function.

Electrons are fermions or Fermi particles, which obey Pauli’s
exclusion principle so each quantum state can hold either one
electron or none.

If N is the total no. of electrons, in 3D, electrons will occupy a
sphere of radius k, then highest occupied state n;=N/2

Allowed energy bands are made up of discrete energy levels. If the
number of states in a small range of energy AE per volume in the
band is counted, it is called density of states.



Density of States

Consider free electrons inside a metal of cubic shape
and size ‘L.

ApAX=h, Ax=L & Ap=#hk

So, Ak = 2% = size of each statein k —space

3
2
Volume of each state = (—ﬂj

4
Volume of sphere in k-space = § 7k



No. of states= 2 x 3

o, N=k3V /3n?

Density of state

g(E) = Number of energystates per unitenergyrange per unitvolume

1N
V dE

— 1 d [ks\/j as,E=h2k?/2m or k=(2mE/h?)y?

VvV dE <
_ d [ZmEj [ ] Ez
_dE 37 272'




Density of states in semiconductors

3/2
+ g(E) = density of states= ="/

A3
For a semiconductor, approximating
the E vs k curve to a parabola at the
bottom of the conduction band for electrons, we have

212
E—FE + fick E(k)
‘ ijf; !
. |
or, E—E =0k Ji
2m; N

x3y372
DOS in conduction band = g_(E)= 431(2:;"?) —VE—-E,

Which is valid for Valid for all E > E_ K ’

C.B & V.B in reduced k-space



Density of states......

* Similarly, approximating at the top of the valence band for

the holes,
}sz
E—p,_ K
2m;
-Ekz
e Or, £,— FE =
2m*

e DOS of holes in valence band

47 2m%)*?
L4 :gV(E): h3 EL. — E

Which is valid for all ES E,

D.(E)

D(E)

D,(E)



Fermi-level and Fermi-Dirac distribution

At T = 0K, all the possible quantum energy state would be filled up
with two electrons each up to a maximum level called the Fermi
Level. The energy of the state at the Fermi level is known as the Fermi
energy, E..

Density of states tells us how many states exist at a given energy E.
The Fermi function f(E) specifies how many of the existing states at
the energy E will be filled with electrons. The function f(E) specifies,
under equilibrium conditions, the probability that an available state at
an energy E will be occupied by an electron. It is a probability
distribution function.

Both electron and hole are Fermi-Dirac particles with spin %.

E. = Fermienergy or Fermi level

1
AE) = 1 + eE—Ep)KT

k = Boltzmann constant=1.38 x 10723 J/K
= 8.6 x 10— eV/K

T = absolute temperature in K

@n
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Fermi-Dirac distribution

When T=0K
ror BB FE>Ee) = 1+ex;(+oo) =0
1 1
E ForE<E;: FE<BR) = T 3
Er
When T>0K & E=E;
X : | BB -

f(E) T 1texp© 1+1 2



Temperature dependence of Fermi-Dirac distribution Function

: ] - f(E) = 1 _E-E.) kT
Sl =l |
2 ! |
f(Ey=e (E-Ey)/kT
p gl
0 E]- —_— 0 E[,
¢ E

@r=0K (b)T> 0K




The probability of a state a distance dE above E; being occupied is the same
as the probability of a state a distance dE below E; being empty. The function
fe (E) is symmetrical with the function 1 - f; (E) about the Fermi energy, E; .

[ e— a’;-Jr.-

The probability of a state being occupied, jip.[I.E}~ and the pmlhahilit}* of a state being e;ﬁpt}g - fF[E].



when E - Eg >> KT, the exponential term in the denominator is much

greater than unity. We may neglect the 1 in the denominator, so the
Fermi—Dirac distribution function becomes

—(E — Efp)
fF{E}ﬁcxp[ T F]

is known as the Maxwell-Boltzmann approximation, or Boltzmann approx.

_— Fermi—Dirac function

1.0

— Boltzmann approximation




SEMICONDUCTOR IN EQUILIBRIUM

Equilibrium implies that no external forces (voltages, electric fields.
Magnetic fields or temperature gradients) are acting on the
semiconductor. All properties of the semiconductor will be
independent of time in this case.

Equilibrium result will be extended to the case when a voltage is
applied to a semiconductor device.

Initially an intrinsic semiconductor is considered.

Current in a semiconductor is determined by the number of electrons
in the conduction band and the number of holes in the valence band

Both of them can be calculated from the density of states function
and the Fermi distribution function



Equilibrium Carrier concentration

Distribution of electrons in the conduction band is given by the
density of allowed quantum states times the probability that a
state is occupied by an electron

n (E) =g, (E) fe(E)

Total electron concentration per unit volume in the conduction
band at thermal equilibrium

n, = |9, (E) f (E)dE

For the holes in the valence band,

p(E) = g,(E)[1- fe(E)]
Equilibrium concentration of holes in the valence band

Po = [9,(E)[L— fe (E)]dE



Assuming that Fermi level is midway in the band gap, for
electron in the conduction band, E > E;

If E.— E;>>KkT then E-E; >>KkT; so F-D function reduces to
Boltzmann fn.

: ] o e B =Eg)]
R E—Ep P T

kT

| +exp

 Thermal eqgbm. Electron density in the conduction band

3

g = IM(?”)Z J(E-E) exp[_(Ek__I_ SINTS

E

C



P
i KT

* Sointheintegral,

3

 47(2m’KT)? E-E.)
o 3

exp[_( —

0

]O]x; exp(—x)dx

1
The integral is a gamma function whose value is = E\/;

27m KT

2 kgT — N e kgT
h2

C

S (EE) C(EEp)
Then, n, = 2{ }

3

* 2
27, Ke T } =2.8x10" /cm?® for Si at 300K

h2

where N, = 2{



Similarily

_(Ei-E)
po _ Nve kgT
3
27 KT |2
where N, = 2[ hp2 = } =1.04x10"/cm® for Si at 300K

N.and N, are effective density of states at the bottom of conduction and
the top of valence bands respectively.

Table 4.1 | Effectivedensity of states function and effective mass values

N (em™) N, (em™) m fmy 7 (my
Silicon 2.8 x 10° 1.04 x 107 1.08 (.56
Gallium arsenide 4.7 x 1047 7.0 x 10" 0.067 0.48

Germanium 1.04 x 104% 6.0 x 1O (.35 0.37




Intrinsic Carrier Concentration:

In the intrinsic semiconductor the concentration of electrons in the conduction
band and concentration of holes in the valence band are same.

nN;=P;

The fermi energy level is called intrinsic fermi energy level E;
Song=n;, and p,=p,

E.—E, Eq

C

ni pi — N N S ‘el — Nche_kBT — ni2

C \Y4

Eg

For intrinsic semiconductor,n=p=n, =./N.N e *&'

n, =intrinsic carrier concentration

3 Eg

= 3.9x10%2T2e 2T

Value of n, at 300K

Silicon n, = 1.5 x 10" em™
Gallium arsenide n, = 1.8 x 10° ¢cm~*
Germanium n, = 2.4 x 10" ¢m—#




Intrinsic Fermi Level:

_Ec_Ef _Ef—EV
AS ni= pi — Nce kgT _ Nve kgT
Taking Ioge, |nNC _ﬁ _ |nNV _ Ef _Ev
KgT KT
So,E, = E.+E, +kBTIn N,
2 2 (N,

E. = intrinsic Fermi level

m*
:1(E0+EV)+3KBTIn > =E
2 4 m

Neglecting the lastterm,

E, = 2(E.+E)

Intrinsic
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Energy band
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8LEX(E) = n(E)

Area = ng =
electron
concentration

&EX1 — fr(E)) = p(E)

4B \
[

Area = py =
hole concentration

fr(E) = 0 frE) =1
@



Expressions for solving numerical on density of states, fermi distribution function

and carrier concentration

1 dN
E)=DOS =———
g(E) v dE
#3312
g.(E) = DOS inCB = 4”(2:;9 BB
*3 312
g,(E) = DOS inVB = 4_”%;”_;&_ =
1
fF (E) — E-E,
1+e '
1
1— fF (E) — E-—E
1+e '

[KT] + = [KT] 300 X T/ 300



n, = N_e e
_(Ef_Ev)
Po = N e el

[Nc] T= [Nc] 300 X (T/ 300)3/2

[Nv] T= [Nv] 300 X (T/ 300)3/2

n,p, =N N.e

C \4

Ge Si GaAs

Eg,eV
(300K)
m* /m, | 0.55 1.08 | 0.067

m*/m, | 0.37 | 0.56 | 0.48

0.66 | 1.12 1.42

Table 4.1 | Effectivedensity of states function and eff

m*
E. =£(EC+EV)+3kBT In| —£
2 4 m.

N, (em™) N, (em™)
Silicon 2.8 x 10" 1.04 x 10"
Gallium arsenide 4.7 x 10*7 7.0 x 10'®
Germanium 1.04 x 10°® 6.0 x J{®




Intrinsic carrier density n, (cm ™)
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Donor & acceptor states

In extrinsic semiconductor, controlled amounts of specific dopant or impurity

atoms are added so that thermal-equilibrium electron and hole concentrations
are different from the intrinsic semiconductor.

Donors: P, As, Sb Acceptors: B, Al, Ga, In

Phospharus £ i Eoron
o~ atorm ; N

-

e
.';.

o
-
.-"Ir

. Marmal
" bond .

™ Extra

unbound
alactron

As, a Group V element, introduces conduction electrons and creates N-
type silicon, and is called a donor.

B, a Group lll element, introduces holes and creates P-type silicon, and is
called an acceptor.



> lonisation Energy

E=T+V = - m*e*/ 8n?n2h?
For Hydrogen E=-13.6 eV

For Silicon E=-25.8meV isthe energy required to lift an
electron from donor level to conduction band

Dopant ionization energy ~50meV (very low).

» Silicon and germanium, can also be impurity atoms in gallium
arsenide.

» If a silicon atom replaces a gallium atom, silicon impurity will
act as donor.

»if the silicon atom replaces an arsenic atom, silicon impurity
will act as an acceptor.

»The same is true for germanium as an impurity atom.

»Such impurities are called amphoteric.



DONORS in Silicon crystal
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DONOR states in the band model
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ACCEPTORS in Silicon crystal
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Degenerate & nondegenerate semiconductors

When dopant conc. is small they are spread far apart from each other in the
host, so there is no interaction between them.

So, impurities introduces discrete, non interacting donor energy states in N-
type semiconductor and acceptor states in P-type semiconductor. These are
called non degenerate semiconductors.

But if the dopant conc. increases, the distance between them decreases, so
they start interacting between themselves. This give rise to splitting in their
energy level and formation of dopant energy bands

For further increase in the dopant conc. i.e., for dopant conc. comparable
with effective density of state N_or N, , dopant bands may overlap with the
conduction band ( for donor dopant ) or valence band (for acceptor dopant)
of the host semiconductor.

Then the Fermi level may lie in the conduction / valence band. These are
called degenerate semiconductors

In degenerate n-type semiconductor, the states between E. and E, are
mostly fill with electrons; so, the electron concentration in the conduction
band is very high



Electron energy —

Similarly, in the degenerate p-type semiconductor, the energy states between
E: and E,, are mostly empty; so, the hole concentration in the valence band is

very high
. Conduction band
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Carriers in Extrinsic Semiconductors

» Dopants change the electron & hole distribution in semiconductor
»Fermi energy & Fermi level change in the band gap
» Electron & hole density in the CB & VB change
»>If E. > Eg; then ny, > p, ;- itis N-type, electrons are majority
& holes are minority carrier
»If E. < E; ; then n < p, ;- itis P-type, holes are majority
& electrons are minority carrier

Equilibrium Carrier concentration

_(EC_Ef) (E:—E,)

n=Ne & p,=Ne X
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Complete lonization, Partial ionization and Freeze-Out

* The probability function of electrons occupying the donor state
IS

P Nd
“'_H_l (E(,—EF)
=X
i T
e & Hd-——Nﬁ;—N:
N(f A
* Slmllarly, P == 1 Tk ZN(;—NG
[ 4 =@ <
1Lg Xp( kT )

e When
N&r _(Ed == EF)_

(EJ_EF) > kT ’ ng ~ [ E.fa’ P EF) — ZN*'*" E}{p[ T
— CX[p
2 kT

|



ng = N, exp [_(E}; EF):[
s 2NdeXP[-(E§(; EF):|
BataAg IN, exp [‘(Ei; E;‘)] 0 5 [—(E;(; E.&')]
Ny X, i
N. B — &
ng + ng 1+me><p[ ( - f)]

(E. - Eg4,) is the ionization energy of the donor electrons.



Ex:- If “P” is added to Si at 300K with conc.= 101 ¢cm3
(E.- E,) = 0.045 eV

Ratio of electrons in the donor state to total electrons in CB plus donor electron

1
14 = = — =0.004]1 =0.41%
no + g l 2.8 x 10 (*0045
exp

2(1016) 0.0259

At RT, all the donor atoms have donated one electron to the
conduction band or donor states are completely ionised, creating
more electrons in the CB

Similarly, all acceptor atoms have accepted an electron from the
valence band, creating more holes in the VB i.e., there is complete
ionisation in the acceptor states



At T= 0K, all electrons are in their lowest possible energy state;
that is, for an n-type semiconductor, each donor state must contain
an electron, thereforen;= N, ,or N, =0

So, exp(Ed = EF) =0

kT

As T=0, it happens when the numerator is= - or, E; > E,

The Fermi energy level is above the donor energy level at absolute
zZero.
In p-type semiconductor at absolute zero temperature, the impurity
atoms will not contain any electrons, so that the Fermi energy level must
be below the acceptor energy state. The distribution of electrons among
the various energy states, and Fermi energy, is a function of temperature.
No electrons from the donor state are thermally elevated into the
conduction band and no electrons from the valance band are elevated
into the acceptor states. This effect is called Freeze-out.
Between T = OK (freeze-out) & T = 300 K, complete ionization, there is
partial ionization of donor or acceptor atoms.



Compensated Semiconductors

A compensated semiconductor contains both donor and
acceptor impurity atoms in the same region. It is formed, by
diffusing acceptor impurities into an n-type material, or by
diffusing donor impurities into a p-type material.

In n-type compensated semiconductor N4> N,
In p-type compensated semiconductor N, > N,

If N, = N, itis a completely compensated semiconductor
having the characteristics of an intrinsic material.

In thermal equilibrium, the semiconductor crystal is
electrically neutral thatis the net charge density is zero.

n{]-I—N;:PU—{—N; As. ”d"—_Nd_N:

Or, HU+(Nc:—Pa):PU’|‘(Nd_”d) &pa:Na_N;



ny and p, are the electron and hole conc. in the donor and acceptor

states resp.

For complete ionization, n, and p, are both zero. So,

”U'l"Na:pU_I'Nd

2

§1<
— ”[}+Nfz:_i+Nd
Hn

— ng—(Ny— Nong —n>=0

N_Na N_Na ;
— ”0=(d7_ )+\/( d2 )+’%2

similarily

NN N = N X~
= d+\[( 02 d) +n]

The positive sign in the
quadratic formula must
be used, since, in the

limit of an intrinsic
semiconductor when
Ny,=N, =0, the

electron concentration
must he a positive
quantity, or ny=n;.
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»as we add donor impurity atoms, the conc. of electrons in the conduction hand
increases above the intrinsic carrier concentration & minority carrier hole conc.
decreases below the intrinsic carrier concentration

»When donor impurity added, there is a redistribution of electrons among
available energy states.

» A few of the donor electrons will fall into the empty states in the valence band
and annihilate some of the intrinsic holes.

»The minority carrier hole concentration will therefore decrease

»Also because of this redistribution, the net electron conc. in the conduction
band is not equal to the donor concentration plus intrinsic electron
concentration.

»The intrinsic carrier concentration n, is a very strong function of temp. As the
temperature increases, additional electron-hole pairs are thermally generated so
that the n, term begin to dominate and the semiconductor will eventually lose its
extrinsic characteristics.



Carrier Concentration and Temperature

E
At highT :n=p=./N_N, exp[— 2kgTJ: n,(T)

B
At roomT :n=N, >>n. for N —type

ntrins At lowT :n= wexp[—ﬂ) for n—typeSi
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In N-type ; the majority carrier is calculated by

N_Na N_Na ;
’10=(d2 )+\/( d2 )+”§2

& minority carrier by

In P-type ; the majority carrier is calculated by

NN N = N X~
= d+\[( 02 d) +n;

& minority carrier by

N — 1
(@)
Po




Variation of Fermi level with dopant conc. and temp.

* We have, (E.~E¢)

n,=Ne

C

N,
o, E.—Er=kTIn (—-—)
Hp

In N-type semiconductor, N, 2 n; then ng = Ny

S E.— Epr=%T1 Ne
y — i Il —
01 4 a" Nd'

The distance between the bottom of the conduction band and the Fermi
energy is a logarithmic function of the donor concentration. As the donor
concentration increases, the Fermi level moves closer to the conduction band.
Conversely, if the Femi level moves closer to the conduction band, then the
electron concentration in the conduction band is increasing.

For, compensated semiconductor, then the N;,= N,-N,,



(EE—Efri)

1o
as, n, = n,e <1 Er —Epi = kT In (n-)

Shows difference between the Fermi level and the intrinsic Fermi level as a
function of the donor concentration. It is applicable for an n-type
semiconductor, where n,

N _Na N, _Na g
= dz )+\/( dz )H"z

if Ng-N,=0,then n,=n;and E;=E

_(E¢-E))

i _ ke T N,
againp, = N.e So, Ep—E,=kTIn (—-)

Po

Ep B, = XF i (N ) as the acceptor concentration increases,
and e

N. the Fermi level moves closer to the VB.

¥




Fermi Energy, E;, moves
towards conductance band on
increasing doping.

Fermi Energy, E;, moves
towards valance band on
iIncreasing doping.



Also Eri —Ep =kgT In&
: n

Is applicable for an p-type semiconductor, where p,

NN N o N X *
= L+ (02 d) +n;

for an n-type semiconductor, n, > n,, and E. > E;.. The Fermi level for an n-type
semiconductor is above E,,. For a p-type semiconductor, p,>n,, so E.>E..
The Fermi level for a p-type semiconductor is below E., .

P-type




Variation of Fermi level with dopant conc. and temp.

»As the doping levels increase, the Fermi energy level moves closer
to the conduction band for the n-type material and closer to the
valence band for the p-type material

»As, n, depends on ‘T’ strongly, so also E;

»As the temperature increases, n; increases, and E; moves closer
to the intrinsic Fermi level.

(i) At high temperature, the semiconductor material begins to lose
its extrinsic characteristics and begins to behave more like an
intrinsic semiconductor. So E; = E;

(ii) At very low temperature, freeze-out occurs

Then, E; > E, for the n-type and E, < E,, for the p-type material.
(iii)At absolute zero degrees, all energy states below E; are full and
above E.are empty.

»In thermal equilibrium, the Fermi energy level is a constant
throughout a system.
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EFFECTIVE DENSITY OF STATES

N Eq[znm”fn’]%’? It is as if all the energy states in the conduction band

T e (valence band) were effectively squeezed into a single

energy level, Ec (Ev), which can hold Nc(Nv) electrons (per

S kT2 cubic centimeter). As a result, the electron (hole) conc. is

,-ﬂ-'x_,zz[m——%wJ the product of Nc (Nv) and the probability that an energy
h” state at Ec (Ev) is occupied (unoccupied).

IONISATION ENERGY




Impurity ionization energies in silicon

and germanium

Ionization energy (eV)

Impurity Si Ge
Donors
Phosphorus 0.045 0.012
Arsenic 0.05 0.0127
Acceptors

Boron 0.045 0.0104
Alummum 0.06 _ i 0 122

Impurity lionization energies

in gallium arsenide

Impurity Ionizationenergy (eV)
Donors

Selenium 0.0059
Tellurmum 0.0058
Silicon 0.0058
Germanium 0.00061
Acceptors
Beryllium 0.028
Zince 0.0307
Cadmimum 0.0347
Silicon 0.0345
Germanmum 0.0404



