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Introduction to Quantum Physics

• Macro particle- Classical Physics based on Newton’s laws

• Micro particle – Quantum Physics; ex- electrons and high 
frequency electromagnetic waves

• Basic principles in quantum physics: 

(I) energy quanta :- E=hν

(II) Wave particle duality :- λ = h/p

(III) Uncertainty principle :- Δx. Δp ≥ ħ = h/2π & other two

[ħ = 1.054 x 10 -34 J-s is very small; so significant only in the 
subatomic level]

• Consequence: we cannot determine  the exact position of 
an electron, but only  determine the probability of finding 
an electron at a particular position



Introduction to Quantum Physics ……..

 Experimental results involving electromagnetic waves and micro
particles could not be explained by classical laws of physics, hence,
Schrodinger, in 1926 provided wave mechanics which incorporated
the principles of quanta of Max Planck, the wave-particle duality of
de Broglie & uncertainty principle.

 Motion of electrons in a crystal is explained by wave theory.

Wave theory is described by Schrodinger's wave equation in wave
function ψ,

 time-dependant

&                                                                           time-independent

ψ,  is used to describe the behavior of the particle with wave nature & 
is a complex quantity



Introduction to Quantum Physics ……..

• Probability density given by

•

= 

With 

Boundary conditions used for solution of the Sch. Eqn.



Introduction to Quantum Physics ……..
 Application of Sch. Eqn.

Free Particle:                      continuous energy

Particle in Potential Well : energy is quantized and discrete

Particle in Potential step:   finite probability of particle moving 
to step region when E  < V0

Particle in Potential barrier:  Tunneling 

Wave theory may be extended to the atoms:

With

quantum

numbers 

Electron distribution in the atom

obey Pauli’s exclusion principle
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Introduction to Quantum theory of solids

• Crystal = lattice + basis

• Basis has atoms in it, which have bound electron as well as free 
electrons in them. The free electrons inside the crystalline solid 
roam freely and are mainly 

responsible for 

conduction phenomena

• Inside  the crystal structure the positive ions are submerged in 
the sea of free electrons





Introduction to Quantum theory of solids……
• Electrons inside the atoms of a solid have wave nature

• Free electrons move throughout the crystal, but restricted
within the surfaces; hence are treated as particle trapped in a
box and studied with help of Sch. Eqn.

• Electrons in a solid can take up discrete energy values & obey
Pauli's principle for their distribution

• To determine the electrical properties in a semiconductor
crystal and develop the current- voltage characteristic for device
application, it is important to understand the properties of the
electrons in the crystal lattice and the statistical characteristics
of the large no of electrons in the crystal.

• Behavior of free electron is different from electron in the
potential field of the crystal

• As current is due to flow of charge, electron behavior in external
electric field is important



Energy Band

Electronic States in Multi-electron atom
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M atom

n=2

M2

molecule

M-M distance
0

M – solid

N atoms N- electron states

Energy Bands

• The allowed energy levels for an atom are discrete (2 electrons with 

opposite spin can occupy a state)

• When atoms are brought into close contact, these energy levels split

• If there are a large number of atoms, the discrete energy levels form a 

“continuous” band

• As gas condenses into a solid, one single energy state of an atom expands 

into a band with closely spaced energy states. This also leads to lowering of 

total energy.

• As the two atoms get closer than „a‟, repulsion due to core electrons/nuclei 

increases.

Consider: Atom „M‟ with single outer „s‟ electron
Core electron 

/nuclei 

repulsion
a



Energy bands in solid
(Qualitative)

since no two electrons can have the same quantum number, the discrete energy  must split 
into a band of energies in order that each electron can occupy a distinct quantum state.



Energy bands in solid: Kronig-Penny model

• Actually the electron sees a periodic potential inside a solid
with spatial period of ‘a’ due to its crystal structure. The
periodic potential can be approximated by the Kronig Penny
model which is theoretically solvable.
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Solution for Shrödinger’s
equation for Kronig Penny
model is possible for energies
that satisfy the following
conditions
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Since -1 < cos ka < +1, 
no solution is possible, 
if RHS of equation is less than 
one or greater than one.



Energy Bands
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Energy Bands

E(k)

k

Band gap
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Band structure in a solid

Conduction band

Valence band

Forbidden gap

•Valence band may be 
partially filled, half filled or 
completely filled
•Forbidden gap may be 
narrow, wide or totally 
absent 



Energy Bands

Highest filled band

(Valence Band)

Lower filled band

Lowest empty band

(Conduction Band)

2s

3s

3p

Atomic State

• Energy states of atom expand into energy bands of a crystal.
• The lower bands are filled and higher bands are empty in a 

semiconductor.
• The highest filled band is the valence band.
• The lowest empty band is the conduction band .

Crystalline State



Classification in a solid
Conductors                            semiconductors                    Insulators

ρ = 10-4 -10 - 6 Ωm              ρ= 102 – 10 9 Ωm              ρ= 10 11- 10 22 Ωm 

Cu29

Mg12

CB

VB

Eg = 1eV

Eg =  3 - 10 eV

CB

VB

Eg

EV

EC

V.B

C.B

EV

EC

V.B

C.B



Energy Bands

Ev

Ec

Eg = 1.12 eV

Si - semiconductor

Ec

Filled

Empty

metal

Filled/Empty  bands                 Filled/Empty bands Half filled band

Band gap present Large Band gap Overlapping bands
(0.1 – 2.5 eV) (>3 eV) ( no band gap)

Carriers can be Very few carriers Large no. of
generated carriers
thermally

Ev

Ec

Eg = 9 eV

SiO2 - insulator



Both electrons and holes tend to seek their lowest 

Holes float up like bubbles in water.

Electrons tend to fall in the energy band diagram. 

Ec

E
v

electron kinetic energy

hole kinetic energy

in
c
re

a
si

n
g

e
le

c
tr

o
n

e
n
e
r g

y

in
c
re

a
si

n
g

h
o
le

e
n
e
r g

y

energy positions. 



Direct band gap

Ex: GaAs

Indirect band gap

Ex: Si,Ge

The extrema for the conduction and valence bands are at different values of K 
for silicon and germanium --these are called indirect bandgap semiconductors

The conduction band minimum and valence band maximum both occur at K=0 
for GaAs --this is called a direct bandgap semiconductor.

indirect bandgap:  ΔK is large but for a direct 
bandgap: ΔK=0 and light in direct bandgap 
materials (GaAs, GaN, etc) but heat in indirect 
bandgap materials (Si, Ge)



Electrons and Holes 

• Holes are the electron voids in the valence band.

• Electrons and holes carry negative and positive charge (±q) 
respectively. 

• higher position in the energy band diagram represents a 
higher electron energy. The minimum conduction electron 
energy is Ec. Any energy above Ec is the electron kinetic 
energy. Electrons may gain energy by getting accelerated in an 
electric field and may lose energy through collisions with 
imperfections in the crystal.

• A lower location in the energy diagram represents a higher 
hole energy It requires energy to move a hole “downward” as 
it is equivalent to moving an electron upward. Ev is the 
minimum hole energy. 

• The forbidden gap= Ec-Ev= Eg





Semiconductor Silicon

Why Silicon Technology is so dominant?

Band gap is ~1 eV.

Single element semiconductor

Almost perfect material available – purity and 

crystalline perfection

Easy processability

Silicon – silicon  oxide interface almost perfect

Amazing chemical, physical and electronic properties

Silicon – second most abundant element after oxygen



Semiconductor Silicon

GaAs

Silicon :
• Diamond cubic lattice: atoms tetrahedrally bonded

(valence electronic shared – no free electrons)
• 4 nearest neighbours
• Lattice parameter : 0.543 nm
• Atomic spacing : 0.235 nm
• 8 atoms per unit cells
• Si atomic density : 5x1028 at/m3

0.543



Semiconductor Silicon

Silicon Bond Model:
Si is in Column IV of the periodic table

Electonic structure of Si atom:
• 10 core electrons – 1s2 2s2p6

• 4 valence electrons – 3s2p2

• 3s and 3p orbitals hybridize to form 4 
tetrahedral 3sp orbitals

• Each orbital has one electron and is 
capable forming one covalent bond 
with a neighbouring atom

• Covalent bonds

Other Semiconductors:
•Ge, C, Si1-x Gex

•GaAs, InP, InGaAs, ZnSe, CdTe
On an average, 4 valence electrons per atom.





Silicon Crystal

http://jas.eng.buffalo.edu/education/solid/unitCell/home.html

5  X 1028 at/m3

0.5431 nm

http://jas.eng.buffalo.edu/education/solid/unitCell/home.html


Intrinsic Semiconductor (Si)

• At 0K, there are no free electrons.
• At finite temperature, some electrons

break free due to thermal excitation
energy, kBT and a conduction electron
and hole are created.

• A hole is absence of electron and has
positive charge equal in magnitude to
electronic charge.

• The electrons and holes are not
localised as shown in the picture, but
form a cloud as per quantum physics.

Si Si Si

Si Si Si

Si Si Si





Effective mass

In addition to an externally applied force, there are internal forces in the 
crystal due to positively charged ions or protons and negatively charged 
electrons, which will influence the motion of electrons in the lattice

it is difficult to take into account all of the internal forces, so we write

m*, called the effective mass, takes into account the particle mass and  
also the effect of the internal forces, it is related to  the E versus k curves



Effective Mass …….



Effective Mass …….



Effective Mass …….



Effective Mass …….

Different lattice spacing lead to different curvatures for E(K) and effective 
masses that depend on the direction of motion.

effective mass is a parameter that relates the quantum mechanical results
to the classical force equations, provided that the internal forces and
quantum mechanical properties are taken into account through the
effective mass

The motion of the free electron is in the opposite direction to the 
applied electric field because of the negative charge, as a= - q E /m 



Ge Si GaAs

Eg, eV

(300K)
0.66 1.12 1.42

mn/mo 0.55 1.08 0.067

mp/mo 0.37 0.56 0.48

mo = rest mass of electron = 9.11 x 10-31 kg

Effective mass of electrons and holes:

bandtheofcurvature
k

E
mSo

1

2

2
2* 

E(k)

k

*
1m

*
2m

*
1

*
2 mm

Effective Mass …….

Since, the second derivative at a minima is positive, 
electrons at the bottom of conduction band has negative 
charge and positive  mass ( larger d2E/dK2 ; light m* )

Again,second derivative at a
maxima is negative, the
effective mass will be negative.
But, a= - q E / -m =q E /m
particle at the top of  valence 
band move in the field 
direction; these are called 
holes, has a positive effective 
mass and a positive electronic 
charge
smaller d2E/dK2 ; heavy m*



Density of states
• The number of carriers contribute to the conduction process is a

function of the number of available energy or quantum states. Each
state represents a unique spin (up and down) and unique solution
to the Schrodinger’s wave equation for the periodic electric
potential function.

• Electrons are fermions or Fermi particles, which obey Pauli’s
exclusion principle so each quantum state can hold either one
electron or none.

• If N is the total no. of electrons, in 3D, electrons will occupy a
sphere of radius k , then highest occupied state nf = N/2

• Allowed energy bands are made up of discrete energy levels. If the
number of states in a small range of energy ΔΕ per volume in the
band is counted, it is called density of states.



Density of States

Consider free electrons inside a metal of cubic shape 

and size „L‟.
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No. of states =   2 x

as, E = ħ2 k2 / 2m   or   k = (2mE / ħ2 )1/2

Density of state



Density of states  in semiconductors

• g(E) = density of states=

For a semiconductor, approximating 
the E vs k  curve to a parabola at the
bottom of the conduction band for electrons, we have

Or ,                                 

DOS in conduction band = gc(E)=                                                  

Which is valid for Valid for all E ≥ Ec C.B & V.B in reduced k-space

E(k)

k
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Density of states……

• Similarly, approximating at the top of the valence band for 
the holes, 

• Or,

• DOS of holes in valence band 

• =gv(E)=

Which is valid for all E≤ Ev

Ec

Ev

D(E)

E
Dc(E)

Dv(E)



Fermi-level and Fermi-Dirac distribution
• At T = 0K, all the possible quantum  energy state would be filled up 

with two electrons each up to a maximum level called the Fermi 
Level. The energy of the state at the Fermi level is known as the Fermi 
energy, EF.

• Density of states tells us how many states exist at a given energy E.
The Fermi function f(E) specifies how many of the existing states at
the energy E will be filled with electrons. The function f(E) specifies,
under equilibrium conditions, the probability that an available state at
an energy E will be occupied by an electron. It is a probability
distribution function.

• Both electron and hole are Fermi-Dirac particles with spin ½.

EF = Fermi energy or Fermi level

k = Boltzmann constant = 1.38 10 23 J/K 
= 8.6 10 5 eV/K

T = absolute temperature in K 





Fermi-Dirac distribution
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When T=0K

When T>0K & E= EF



Temperature dependence of Fermi-Dirac distribution Function



The probability of a state a distance dE above EF being occupied is the same
as the probability of a state a distance dE below EF being empty. The function
fF (E) is symmetrical with the function 1 − fF (E) about the Fermi energy, EF .



when E − EF >> kT, the exponential term in the denominator is much

greater than unity. We may neglect the 1 in the denominator, so the

Fermi–Dirac distribution function becomes

is known as the Maxwell–Boltzmann approximation, or  Boltzmann approx.



SEMICONDUCTOR IN EQUILIBRIUM

• Equilibrium implies that no external forces (voltages, electric fields.
Magnetic fields or temperature gradients) are acting on the
semiconductor. All properties of the semiconductor will be
independent of time in this case.

• Equilibrium result will be extended to the case when a voltage is
applied to a semiconductor device.

• Initially an intrinsic semiconductor is considered.

• Current in a semiconductor is determined by the number of electrons
in the conduction band and the number of holes in the valence band

• Both of them can be calculated from the density of states function
and the Fermi distribution function



Equilibrium Carrier concentration

• Distribution of electrons in the conduction band is given by the 
density of allowed quantum states times the probability that a 
state is occupied by an electron

• n (E) = gc (E) fF(E)

• Total electron concentration per unit volume in the conduction 
band at thermal equilibrium

•

• For the holes in the valence band,

• p(E) = gv(E)[1- fF(E)]

• Equilibrium concentration  of holes in the valence band

dEEfEgn Fc )()(0

dEEfEgp Fv )](1)[(0



• Assuming that Fermi level is midway in the band gap,  for 
electron in the conduction band, E  > Ef  

• If Ec – Ef > > kT  then  E-Ef > > kT ;  so F-D function reduces to 
Boltzmann fn.

• Thermal eqbm. Electron density in the conduction band
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• Let,

• So in the integral, 
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Nc and Nv are effective density of states at the bottom of conduction and 
the top of valence bands respectively.



Intrinsic Carrier Concentration:
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In the intrinsic semiconductor the concentration of electrons in the conduction 
band and concentration of holes in the  valence band are same.

ni= pi

The fermi energy level is called intrinsic fermi energy level Efi

So n0 = ni and p0 = pi

Value of ni at 300K
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FD function







Expressions for solving numerical on density of states, fermi distribution function 
and carrier concentration
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Ge Si GaAs

Eg, eV

(300K)
0.66 1.12 1.42

m*n/mo 0.55 1.08 0.067

m*p/mo 0.37 0.56 0.48
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The intrinsic carrier concentration of
Ge, Si, and GaAs as a function of
temperature.

If the electron and hole effective masses
are equal so that mn* = mp*, then the
intrinsic Fermi level is exactly in the center
of the bandgap. If m*p > m*n the intrinsic
Fermi level is slightly above the center,
and if m*p < m*n it is slightly below the
center of the bandgap.



In extrinsic semiconductor, controlled amounts of specific dopant or impurity
atoms are added so that thermal-equilibrium electron and hole concentrations
are different from the intrinsic semiconductor.

Donor & acceptor states

Donors: P, As, Sb Acceptors: B, Al, Ga, In

• As, a Group V element, introduces conduction electrons and creates N-
type silicon, and is called a donor.

• B, a Group III element, introduces holes and creates P-type silicon, and is 
called an acceptor.



Ionisation Energy

E =T+V =  - m*e4 / 8π2n2h2

• For Hydrogen E= -13.6 eV

• For  Silicon     E= - 25.8meV is the energy required to lift an 
electron from donor level to conduction band

• Dopant ionization energy ~50meV (very low).

Silicon and germanium, can also be impurity atoms in gallium 
arsenide.
 If a silicon atom replaces a gallium atom, silicon impurity will 
act as donor.
if the silicon atom replaces an arsenic atom, silicon impurity 
will act as an acceptor. 
The same is true for germanium as an impurity atom. 
Such impurities are called amphoteric.



DONORS in Silicon crystal



DONOR states in the band model



ACCEPTORS in Silicon crystal



ACCEPTOR energy states in the band model



Degenerate & nondegenerate semiconductors

• When dopant conc. is small they are spread far apart from each other in the 
host, so there is no interaction between them.

• So, impurities introduces  discrete, non interacting donor energy states in N-
type semiconductor and acceptor states in P-type semiconductor. These are 
called non degenerate semiconductors.

• But if the dopant conc. increases, the distance between them decreases, so 
they start interacting between themselves. This give rise to splitting in their 
energy level and formation of dopant energy bands

• For further increase in the dopant conc. i.e., for dopant conc. comparable 
with effective density of state  Nc or Nv , dopant bands may overlap with the 
conduction band ( for donor dopant ) or valence band (for acceptor dopant) 
of the host semiconductor.

• Then the Fermi level may lie in the conduction / valence band. These are 
called degenerate semiconductors

• In degenerate n-type semiconductor, the states between EF and Ec are 
mostly fill with electrons; so, the electron concentration in the conduction 
band is very high



Similarly, in the degenerate p-type semiconductor, the energy states between 
EF and Ev, are mostly empty; so, the hole concentration in the valence band is 
very high

Filled states (electrons)

Conduction band

EF

Ec

Ev

Valence band 

Non degenerate semiconductor

Degenerate semiconductor

Empty states (holes)

Conduction band

EF

Ec

Ev

Valence band 



Carriers in Extrinsic Semiconductors
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Dopants change the electron & hole distribution in semiconductor
Fermi energy & Fermi level change in the band gap
Electron & hole density in the CB & VB change
If EF > Efi; then n0 > p0 ;- it is N-type, electrons are majority 

& holes are minority carrier
If EF < Efi ; then  n0< p0 ;- it is P-type, holes are majority 

& electrons are minority carrier  

Equilibrium Carrier concentration 
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Complete Ionization, Partial ionization and Freeze-Out

• The probability function of electrons occupying the donor state 
is

• &

• Similarly,

• When                                  

• ;



(Ec - Ed,) is  the ionization energy of the donor electrons.



Ex:- If “P” is added to Si  at 300K with conc.= 10 16 cm-3

(Ec - Ed) = 0.045 eV

Ratio of  electrons in the donor state to total electrons in CB plus donor electron  =

At RT, all the donor atoms have donated one electron to the
conduction band or donor states are completely ionised, creating
more electrons in the CB
Similarly, all acceptor atoms have accepted an electron from the
valence band, creating more holes in the VB i.e., there is complete
ionisation in the acceptor states



At  T= 0K, all electrons are in their lowest possible energy state; 
that is, for an n-type semiconductor, each donor state must contain
an electron, therefore nd = Nd or Nd

+ = 0

So,

As T= 0 , it happens when  the numerator is=  -∞  or, EF > Ed

The Fermi energy level is above the donor energy level at absolute
zero.
In p-type semiconductor at absolute zero temperature, the impurity
atoms will not contain any electrons, so that the Fermi energy level must
be below the acceptor energy state. The distribution of electrons among
the various energy states, and Fermi energy, is a function of temperature.
No electrons from the donor state are thermally elevated into the 
conduction band and no electrons from the valance band  are elevated 
into the acceptor states. This effect is called Freeze-out. 
Between T = 0K (freeze-out) & T = 300 K, complete ionization, there is 
partial ionization of donor or acceptor atoms.

= 0 



Compensated Semiconductors

• A compensated semiconductor contains both donor and 
acceptor impurity atoms in the same region. It is formed, by 
diffusing acceptor impurities into an n-type material, or by 
diffusing donor impurities into a p-type material. 

• In n-type compensated semiconductor   Nd > Na

• In p-type compensated semiconductor   Na > Nd

• If Na = Nd it is a completely compensated semiconductor 
having the characteristics of an intrinsic material.

• In thermal equilibrium, the semiconductor crystal is 
electrically neutral  that is  the net charge density is zero.

• Or, aaa NNp&

As,



nd and pa are the electron and hole conc. in the donor and acceptor
states resp.
For complete ionization, nd and pa are both zero.  So,

similarily

The positive sign in the
quadratic formula must
be used, since, in the
limit of an intrinsic
semiconductor when
Nd = Na = 0, the
electron concentration
must he a positive
quantity, or n0 = ni .
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as we add donor impurity atoms, the conc. of electrons in the conduction hand
increases above the intrinsic carrier concentration & minority carrier hole conc.
decreases below the intrinsic carrier concentration

When donor impurity added, there is a redistribution of electrons among
available energy states.

A few of the donor electrons will fall into the empty states in the valence band
and annihilate some of the intrinsic holes.

The minority carrier hole concentration will therefore decrease

Also because of this redistribution, the net electron conc. in the conduction
band is not equal to the donor concentration plus intrinsic electron
concentration.

The intrinsic carrier concentration ni is a very strong function of temp.  As the 
temperature increases, additional electron-hole pairs are thermally generated so 
that the ni term begin to dominate and the semiconductor will eventually lose its 
extrinsic characteristics.



Carrier Concentration and Temperature
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In N-type ; the majority carrier is calculated by

& minority carrier by 

In P-type ; the majority carrier is calculated by

& minority carrier by 



Variation of Fermi level with dopant conc. and temp.

• We have, 
Tk

EE

c
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eNn
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0

Or, 

In N-type semiconductor, 

So, 

The distance between the bottom of the conduction band and the Fermi 
energy is a logarithmic function of the donor concentration. As the donor 
concentration increases, the Fermi level moves closer to the conduction band. 
Conversely, if the Femi level moves closer to the conduction band, then the 
electron concentration in the conduction band is increasing.

For, compensated semiconductor, then the Nd =  Nd - Na,
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Shows difference between the Fermi level and the intrinsic Fermi level as a 
function of the donor concentration. It is applicable for an n-type  
semiconductor, where n0

if  Nd - Na = 0, then n0 = ni and EF = EFi
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and
as the acceptor concentration  increases, 

the Fermi level moves closer to the VB.



Ec

Ev

Ei

Ef

N-type

Fermi Energy, Ef, moves 

towards conductance band on 

increasing doping.

Ec

Ev

Ei

Ef

P-type

Fermi Energy, Ef, moves 

towards valance band on 

increasing doping.
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Is applicable for an p-type semiconductor, where p0

Also,

for an n-type semiconductor, n0 > ni, and EF > EFi. The Fermi level for an n-type 
semiconductor is above EF,. For a p-type semiconductor, p0 > ni,  so EFi> EF.      
The Fermi level for a p-type semiconductor is below EF , .
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As the doping levels increase, the Fermi energy level moves closer 
to the conduction band for the n-type material and closer to the 
valence band for the p-type material

As, ni depends on ‘T’ strongly, so also EF

As the temperature increases, ni increases, and EF moves closer 
to the intrinsic Fermi level. 
(i) At high temperature, the semiconductor material begins to lose 
its extrinsic characteristics and begins to behave more like an 
intrinsic semiconductor.  So EF = EFi

(ii) At  very low temperature, freeze-out occurs
Then,  EF > Ed for the n-type  and  EF < Ea , for the p-type material. 
(iii)At absolute zero degrees, all energy states below EF are full and 
above EF are empty.

In thermal equilibrium, the Fermi energy level is a constant 
throughout a system.

Variation of Fermi level with dopant conc. and temp.



Position of Fermi level as a function of temperature for various 
doping concentrations.







Ec

Ed

Ea

Ev

Donor level

Acceptor level

Donor ionization energy

Acceptor ionization energy

It is as if all the energy states in the conduction band
(valence band) were effectively squeezed into a single
energy level, Ec (Ev), which can hold Nc(Nv) electrons (per
cubic centimeter). As a result, the electron (hole) conc. is
the product of Nc (Nv) and the probability that an energy
state at Ec (Ev) is occupied (unoccupied).

EFFECTIVE DENSITY OF STATES

IONISATION ENERGY

[Ec – Ed]

[Ea – Ev]



Impurity ionization energies in silicon
and germanium

Impurity lionization energies
in gallium arsenide


