Quantum free electron theory(Sommerfield)

- Particles of micro dimension like the electrons are studied under quantum physics
- moving electrons inside a solid material can be associated with waves with a wave function $\psi(x)$ in one dimension ($\psi(\mathbf{r})$ in 3D)
- Hence its behaviors can be studied with the Schrödinger's equation (1D)

$$
\frac{\partial^{2} \psi(x)}{\partial x^{2}}+\frac{2 m}{\hbar^{2}}(E-V) \psi(x)=0
$$

For a free particle $\mathrm{V}=0$, hence the equation reduces to

$$
\frac{\partial^{2} \psi(x)}{\partial x^{2}}+k^{2} \psi(x)=0
$$

With

$$
\begin{aligned}
& k^{2}=\frac{2 m E}{\hbar^{2}} \\
& \text { or, } E=\frac{\hbar^{2} k^{2}}{2 m}, \hbar=\frac{h}{2 \pi}
\end{aligned}
$$

Sommerfield's model

- As the freely moving electrons can not escape the surface of the material, they may be treated as particles confined (trapped)in a box
- Hence, $V(x)=0$, for $0<x<L$

$$
=\infty, \text { for } \quad x=0 \& x=L
$$

Sch's equation, $\quad \frac{\partial^{2} \psi(x)}{\partial x^{2}}+\frac{2 m E}{\hbar^{2}} \psi(x)=0$
Solution of the equation can be obtained as

$$
\psi(x)=A \sin k x+B \cos k x
$$

From boundary conditions, at $\mathbf{x}=\mathbf{0} \& \mathbf{x}=\mathrm{L}, \Psi(\mathbf{x})=\mathbf{0}$, we can get $B=0$ and $k= \pm n \pi / L$,
Putting the normalization condition we get $A=\sqrt{\frac{2}{L}}$

- Substituting all the values
- $\Psi_{n}(x)=(V 2 / L) \sin n \pi x / L$
- \& $E_{n}(x)=\hbar^{2} k^{2} / 2 m=\hbar^{2} \pi^{2} n^{2} / 2 m L^{2}=h^{2} n^{2} / 8 m L^{2}$

This shows that energy of the electrons inside the material is quantized and hence is discrete

In $3 D, \Psi_{n}(r)=\left(V 8 / L^{3}\right) \sin n_{x} \pi x / L \sin n_{y} \pi y / L \sin n_{z} \pi z / L$
$\& E_{n}(r)=\hbar^{2} k^{2} / 2 m=\left(n_{x}^{2}+n_{y}^{2}+n_{z}^{2}\right) \hbar^{2} \pi^{2} / 2 m L^{2}$

Fermi Level and Fermi Energy:

- Electrons are fermions or Fermi particles, which obey Pauli's exclusion principle
- At OK temperature the highest filled energy level is called the "Fermi Level" \& the energy possessed by the electrons in that level is "Fermi Energy"
- $\quad E_{f}=\hbar^{2} k_{f}^{2} / 2 m$ or $k_{f}=\left(2 m E_{f} / \hbar^{2}\right)^{1 / 2}$
- In 3D electrons will fill up the k-space with one state accommodating 2 electrons each ($\uparrow \downarrow$)
- If N is the total no. of electrons \& is large, electrons will occupy a sphere of radius k_{f}, then highest occupied state

$$
n_{f}=N / 2
$$

From uncertainty principle
$\Delta x \Delta p=h$ or, $\Delta x \hbar \Delta k=h$
Or, $\mathrm{L}(\mathrm{h} / 2 \pi) \Delta \mathrm{k}=\mathrm{h}$ or, $\Delta \mathbf{k}=\mathbf{2 \pi} / \mathrm{L}$

- state in k -space of radius $\mathrm{k}_{\mathrm{f}}=$

$$
=K_{f}^{3} L^{3} / 6 \pi^{2}
$$

- Hence no. of electrons ' N ' $=2 X\left(K_{f}^{3} L^{3} / 6 \pi^{2}\right)$

$$
N=k_{f}^{3} V / 3 \pi^{2}
$$

- So, $k_{f}=\left\{3 \pi^{2}(N / V)\right\}^{1 / 3}$

$$
k_{f}=\left(3 \pi^{2} n\right)^{1 / 3}
$$

- where $n=$ electron density $=N / V=1 / V\left(k_{f}^{3} V / 3 \pi^{2}\right)$
- Or, n=

$$
\frac{1}{3 \pi^{2}}\left(\frac{2 m}{\hbar^{2}}\right)^{\frac{3}{2}} E_{f}^{\frac{3}{2}}
$$

- at 0 K , the fermi energy
- $\mathrm{E}_{\mathrm{f}}(0)=\boldsymbol{\hbar}^{2} \mathbf{k}_{\mathrm{f}}{ }^{2} / \mathbf{2 m}$
- $\quad=\hbar^{2} / 2 m\left(3 \pi^{2} n\right)^{2 / 3}$
- $E_{f}(0)=h^{2} / 8 m(3 n / \pi)^{2 / 3}$
- Fermi velocity $\mathbf{v}_{\mathrm{f}}=\hbar \mathrm{k}_{\mathrm{f}} / \mathrm{m}=\hbar / \mathrm{m}\left(3 \pi^{2} \mathrm{n}\right)^{1 / 3}$

Density of States: $Z(E)=$ no. of states per unit energy range per unit volume of the metal
No. of free electrons within energy value ' E '
$=$ no. of states within the sphere of radius ' k ' in k-space
$=\mathrm{N}(\mathrm{E})=\mathrm{Vk}^{3} / 3 \mathrm{\pi}^{2}=\mathrm{V} / 3 \mathrm{~m}^{2}\left(2 \mathrm{mE} / \hbar^{2}\right)^{3 / 2}$

$$
\text { or, } \mathrm{Z}(\mathrm{E})=\frac{1}{V} \frac{d N(E)}{d E}=\frac{d}{d E}\left(\frac{k^{3}}{3 \pi^{2}}\right)=\frac{d}{d E}\left[\frac{1}{3 \pi^{2}}\left(\frac{2 m E}{\hbar^{2}}\right)^{\frac{3}{2}}\right]
$$

$$
\begin{aligned}
& =\frac{1}{3 \pi^{2}}\left(\frac{2 m}{\hbar^{2}}\right)^{\frac{3}{2}} \frac{3}{2} E^{\frac{1}{2}} \\
& O r, Z(E)=\frac{1}{2 \pi^{2}}\left(\frac{2 m}{\hbar^{2}}\right)^{\frac{3}{2}} E^{\frac{1}{2}} \\
& Z(E)
\end{aligned}
$$

Fermi Dirac distribution function

Distribution of electrons in different energy states is given by Fermi-Dirac statistics.
Fermi Dirac distribution function $F(E)$ gives the probability of occupation of an energy level ' E ', by an electron at temperature ' T '

- $\mathrm{F}(\mathrm{E})=\frac{1}{e^{\frac{\left(E-E_{f}\right)}{k_{\beta} T}}+1}$
- At $\mathrm{T}=0 \mathrm{~K}$

If $E<E_{f}$, then $F(E)=1$
If $E>E_{f}$, then $F(E)=0$

At $\mathrm{T}>0 \mathrm{~K}$
Some states below E_{f} are unoccupied and some above are occupied
For $E=E_{f}, F(E)=1 / 2$
*This is applicable in an energy range $\mathrm{k}_{\beta} \mathrm{T}$

- Average energy of free electrons:

- Av. Energy = total energy of all the electrons in the metal no. of electrons per unit volume
$\langle E\rangle=\quad \int_{0}^{\infty} E . Z(E) F(E) d E$

$$
n
$$

As no. of free electrons per volume, $\mathrm{n}=\int_{0}^{\infty} Z(E) d E . F(E)$

At $T=0 \mathrm{~K}$: upper limit of integration is $\mathrm{E}_{\mathrm{f} 0}$ and $\mathrm{F}(\mathrm{E})$ is 1

$$
\left\langle\mathrm{E}_{0}\right\rangle=\frac{\int_{0}^{E_{f_{0}}} E \cdot \frac{1}{2 \pi^{2}}\left(\frac{2 m}{\hbar^{2}}\right)^{\frac{3}{2}} E^{\frac{1}{2}} \cdot 1 \cdot d E}{\frac{1}{3 \pi^{2}}\left(\frac{2 m}{\hbar^{2}}\right)^{\frac{3}{2}} E_{f}^{\frac{3}{2}}}
$$

As

$$
\mathrm{n}=\frac{1}{3 \pi^{2}}\left(\frac{2 m}{\hbar^{2}}\right)^{\frac{3}{2}} E_{f}^{\frac{3}{2}}
$$

$$
\left\langle E_{0}\right\rangle=\frac{\frac{1}{2} E_{f_{0}}{ }^{\frac{5}{2}}}{\frac{5}{2} \cdot \frac{1}{3} E_{f_{0}}{ }^{\frac{3}{2}}}
$$

For $\mathbf{T}>\mathbf{0 K}$ (In a metal some states above fermi level are occupied at $\mathrm{T}>0 \mathrm{~K}$)
$\cdot\left\langle\mathrm{E}_{\mathrm{T}}\right\rangle=\frac{\int_{0}^{\infty} E \cdot \frac{1}{2 \pi^{2}}\left(\frac{2 m}{\hbar^{2}}\right)^{\frac{3}{2}} E^{\frac{1}{2}} \cdot \frac{1}{e^{\frac{\left(E-E_{f}\right)}{k_{\beta} T}}+1} d E}{\frac{1}{3 \pi^{2}}\left(\frac{2 m}{\hbar^{2}}\right)^{\frac{3}{2}} E_{f}^{\frac{3}{2}}}$
$=\quad<E_{0}>\left[1+\frac{5 \pi^{2}}{12}\left(\frac{k_{\beta} T}{E_{f_{0}}}\right)^{2}\right]$

- Where, $\mathrm{E}_{\mathrm{f}}(\mathrm{T})=E_{f_{0}}\left[1-\frac{\pi^{2}}{12}\left(\frac{k_{\beta} T}{E_{f_{0}}}\right)^{2}\right]$

Specific heat in quantum free electron theory

- In classical theory, Specific heat ' \mathbf{C} ' of the electron gas

$$
\mathrm{C}=\frac{d}{d T} \boldsymbol{c}_{-}^{-}=\frac{d}{d T}\left(\frac{3}{2} k_{\beta} T\right)=3 / 2 \mathrm{k}_{\beta}
$$

- Molar specific heat $=C=\mathbf{n C = 3 / 2 n k}$

Hence, thermal conductivity $K=1 / 2 n k_{\beta} v_{\text {th }} \lambda$

$$
=1 / 3 C v_{t h} \lambda
$$

In quantum theory, av. Energy of a free electron,

$$
<E>=\frac{3}{5} E_{f_{0}}\left[1+\frac{5 \pi^{2}}{12} \frac{k_{\beta}^{2} T^{2}}{E_{f_{0}}^{2}}\right]
$$

For an electron density ' n '
specific heat =

$$
C=n d<E>/ d T=\pi^{2} \mathrm{nk}_{\beta}^{2} T / 2 \mathrm{E}_{\mathrm{f} 0}
$$

Is found to be agreeing with experimental result

Lorenz no. in quantum free electron theory

So, thermal conductivity

$$
\begin{aligned}
& \mathrm{K}=1 / 3\left(\pi^{2} \mathrm{nk}_{\beta}{ }^{2} \mathrm{~T} / 2 \mathrm{E}_{\mathrm{f0}}\right) \mathrm{v}_{\mathrm{th}}{ }^{2} \tau \\
&=\pi^{2} k_{\beta}{ }^{2} \mathrm{nT} \mathrm{\tau} / 3 \mathrm{~m} \\
&\text { (as } \left.1 / 2 m v_{\mathrm{th}}{ }^{2}=\mathrm{E}_{\mathrm{f} 0}\right)
\end{aligned}
$$

So, Weidman - Franz law

$$
\begin{aligned}
K / \sigma & =\frac{\frac{\pi^{2} k_{\beta}^{2} n T \tau}{3 m}}{\frac{n q^{2} \tau}{m}} \\
& =\frac{\pi^{2} k_{\beta}^{2} T}{3 q^{2}} \\
& =L T
\end{aligned}
$$

In classical theory $\mathrm{L}=$ Lorenz no. $=3 \mathrm{k}^{2}{ }^{2} / 2 \mathrm{q}^{2}$
In quantum theory $L=\pi^{2} \mathrm{k}_{\beta}{ }^{2} / 3 \mathrm{q}^{2}=2.45 \mathrm{X} 10^{-8} \mathrm{~W} \Omega / \mathrm{K}^{2}$ and agrees well with exptl. result

