Quantum free electron theory(Sommerfield)

e Particles of micro dimension like the electrons are studied under
guantum physics

* moving electrons inside a solid material can be associated with
waves with a wave function {(x) in one dimension ((r) in 3D)

 Hence its behaviors can be studied with the Schrodinger's
equation (1D)
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Sommerfield’s model

* Asthe freely moving electrons can not escape the surface of the
material, they may be treated as particles confined (trapped)in a

box
e Hence, V(x)=0, for O<x<L e- Pk 0
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Solution of the equation can be obtained as

P(x) = A sin kx + B cos kx
From boundary conditions, at x=0 & x=L, {(x)=0,
we can get B=0 and k=2 nn /L,
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Putting the normalization condition we get A= \/ |_



e Substituting all the values

« W _(x)=(V2/L)sin nnx /L

« & E,(x)=h%2k?/2m =h?1?n? / 2m L? = h2n%/ 8mL?

This shows that energy of the electrons inside the material is quantized and hence
is discrete
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In 3D, W, (r) =(v8/L%sin n;nx /L sinnmy /L sinnnz /L

& E, (r) =h?k? / 2m = (n,2+n 2+n2) W’ [ 2m L?



Fermi Level and Fermi Energy:
* Electrons are fermions or Fermi particles, which obey Pauli’s
exclusion principle

« At OK temperature the highest filled energy level is called the
“Fermi Level” & the energy possessed by the electrons in that
level is “Fermi Energy”

. E;=h2k?/2m or k;=(2mE;/h?)1/2
* In 3D electrons will fill up the k-space with one state
accommodating 2 electrons each ( T )

 If N isthe total no. of electrons & is large, electrons will occupy
a sphere of radius k;, then highest occupie;‘d state

n;=N/2

From uncertainty principle
Ax Ap =h or, Ax hAk = h
Or, L(h/2n)Ak=h or,Ak=2n /L

electron states
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state in k-space of radius k; =

Hence no. of electrons ‘N’ =2 X ( K3 L3/ 6m?)

= K3 L3/ 6m2

N=k3V/3n?

So, k; = {312 (N/ V) }1/3

k; = (32 n) /3
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where n = electron density=N/V=1/V (k3 V / 3n?)

Or, n=

3
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at 0K, the fermi energy

E; (0) =h?k?2/2m

. =h2/2m ( 3n2n)?/3

E/(0) =h?/8m (3n/m)?/3

* Fermivelocity v;=hk;/ m=Hh/m (3n2n) /3

Density of States: Z(E) = no. of states per unit energy range
per unit volume of the metal

No. of free electrons within energy value ‘E’
= no. of states within the sphere of radius ‘k’ in k-space
=N(E) = Vk3/ 3?2 = V/ 3n2(2mE/ h2)3/2

or, ZE)= |[1LdN(E) d ([ k*) d| 1 [ZmE]Z
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Fermi Dirac distribution function

Distribution of electrons in different energy states is given by Fermi-Dirac
statistics.

Fermi Dirac distribution function F(E) gives the probability of occupation
of an energy level ‘E’, by an electron at temperature ‘T’



At T=0K F(E)

If E <E;, then F(E)=1
If E> E;, then F(E)=0

At T>0K

Some states below E; are unoccupied
and some above are occupied

For E=E;, F(E)="%

*This is applicable in an energy range kg T

T=0

F(E)




* Average energy of free electrons:
* Av.Energy = total energy of all the electrons in the metal

no. of electrons per unit volume

Oj'F_7 (E)F(E)dE

<E> =

N

As no. of free electrons per volume, n=  JZ(E)EF(E)
0

At T=0K: upper limit of integrationis E;and F(E) is 1
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For T>0K (Ina metal some states above fermi level are
occupied at T > OK)
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Specific heat in quantum free electron theory
* Inclassical theory, Specific heat ‘C’ of the electron gas

_d .- _4d 3 _

* Molar specificheat= |C= nC=3/2n kg

Hence, thermal conductivity K=1/2 n kg vy, A

=1/3 Cv,, A
In qguantum theory, av. Energy of a free electron,
2 Kk °T?2
<E>=2E, [1+2Z %5
5 ° 12 E-“+,

For an electron density ‘n’

specific heat = C =n d<B>/ dT = w2nkg?T / 2E;,

Is found to be agreeing with experimental result



Lorenz no. in guantum free electron theory

So, thermal conductivity
K=1/3 (m?nkg®T [ 2E; ) vy, ° T
= n?kz*nTt / 3m (as %o mv, 2 =Eg )

So, Weidman - Franz law S 5
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= LT
In classical theory L =Llorenzno.=3kg*/ 2q°
In quantum theory L =r1°k;%/ 39°=2.45X10 ¥ WQ /K?
and agrees well with exptl. result



